ABSTRACT

Master's thesis for master's degree in specialty 161 "Chemical technologies and engineering" on the topic: «New materials on the base of $ZrO_2 - CeO_2 - Eu_2O_3 \gg /$ Igor Sikorsky Kyiv Polytechnic Institute; Supervisor: *Spasyonova L.M.*; Student: *Shendrik A.O.*, XM–61m group.

Explanatory note: 113 pages, 33 figures, 7 tables, 62 sources. Graphic part: 15 slides.

Object of the research: Investigated phase equilibrium in the ternary system $ZrO_2 - CeO_2 - Eu_2O_3$ at a temperature of 1100 – 1500 °C and a binary system $CeO_2 - Eu_2O_3$ at temperatures 600 – 1500 °C.

Purpose of the work: investigation the physical and chemical properties of phases.

Constructed the isothermal section of the phase diagram of a ternary system at a temperature of $1100 \,^{\circ}\text{C} - 1500 \,^{\circ}\text{C}$ and constructed the phase diagram of two-component systems in the temperature range $600 - 1500 \,^{\circ}\text{C}$. We used like research methods the x-ray diffraction (XRD), scanning electron microscopy and also local X-ray spectral analisis.

For the system $ZrO_2 - CeO_2 - Eu_2O_3$ characterized by the formation of broad areas of solid solutions based on cubic modifications of C-Eu₂O₃, F-ZrO₂, F-CeO₂ and narrow on the basis of tetragonal and monoclinic modifications of the B - Eu₂O₃ and ordered phases of the pyrochlore type Eu₂Ce₂O₇ (Py). In the system CeO₂ – Eu₂O₃ at a temperatures of 1500 ° C are formed three types of solid solutions: a cubic structure based on the fluorite F-CeO₂ and Eu₂O₃, and monoclinic modifications, which are separated two-phase fields (F + C) and (C + B).

Keywords:

The oxides of zirconium, cerium, europium, rare earth elements, state diagrams, isothermal section, phase equilibrium.